Can AI Models Reason: Is Data All You Need?

Many are voicing concern that the world is running out of data and that this will be a blocker to progress toward smarter AI models. One paper in fact projects timelines for when we will run out.

AI researchers are looking for ways to adapt.  Nvidia has trained a specific model to generate synthetic data for training other models. Some use this approach, though using AI-generated data to train AI is not without risk.

Others have asked a bigger question, namely, is something fundamentally missing in our approach that relies so heavily on data. Certainly the bitter lesson thesis and the position long advocated by Geoffrey Hinton argue for a data-first approach with “as few” prior assumptions as possible (though every model has a bias).

But it’s currently simply unknown whether just adding more data and compute will do the trick for achieving general intelligence or whether something else is needed. Neurosymbolic approaches are being experimented with, in various forms. But it’s unclear whether these can scale up to the level needed. And the frontier labs, laser-focused on the current paradigm, may not have adequate time or resources to investigate high-risk/high-reward alternatives.

From a theoretical standpoint, sometimes more data is simply not enough. As discussed in a previous post, some problems in mathematics and engineering require exponentially large amount of data to train neural network models. Exponentials can work in your favor, but also can work against you (think of the Tower of Hanoi problem or the Wheat and Chessboard problem). Some problems on certain models cannot be solved by any amount of data available in the entire universe.

The requirements for solving these problems can grow much more quickly than expected. The strength of neural networks, their flexibility, their universal approximation property, can also be a weakness. It can take so much data to nail down all the parameters so that the model is completely error free. Thankfully, many other problems that people want to solve (such as human language modeling) are fundamentally lower dimensional and thus less vulnerable to this problem.

We just don’t know whether the current data-hungry approach will be enough—or whether we’ll need to learn another bitter lesson.

Leave a Reply

Your email address will not be published. Required fields are marked *