Suppose a triangle has sides a, b, and c. Label the angles opposite these three sides α, β, and γ respectively.
Edsger Dijkstra published (EWD975) a note proving the following extension of the Pythagorean theorem:
sgn(α + β – γ) = sgn(a² + b² – c²).
Here the sgn function is -1, 0, or 1 depending on whether its input is negative, zero, or positive.
To see that this really is an extension of the Pythagorean theorem, if γ is a right angle, then α + β = γ and so the sgn on the left hand side evaluates to 0. This forces the right hand side to 0, which says a² + b² = c².
As Dijkstra points out, his is a theorem about triangles, not simply a theorem about right triangles.
I’m not sure if this way of looking at it is useful, since the cosine law has strictly more information.
Since α + β + γ = π, we can rewrite the left hand side as sgn(π – 2γ). And we can use the cosine rule to rewrite the left hand side as sgn(-2ab cos(γ)). Since multiplying by a negative constant flips the sign we can rewrite as
sgn(γ – π/2) = sgn(cos(γ))
and of course this is true in the range 0 < γ < π, which γ must fall in by the convention of how we describe angles in triangles.
Yes! More EWD-related posts please! Thanks! :-)
EWD975 has been (re)published in 2009
http://www.nieuwarchief.nl/serie5/pdf/naw5-2009-10-2-094.pdf
Typo: @2nd para: (EWD975-0) -> (EWD975)
[“-0” is just the number of the first page]