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Abstract

Many Bayesian clinical trial methods are based on random inequali-
ties. For some distribution families, these inequalities can be computed
in closed form. For example, [1] gives closed-form solutions to comput-
ing

P (X > Y )

when X and Y are either independent normal or independent gamma
random variables. However the case of beta random variables is very
important and no closed form solution for this case is known. Such
inequalities must be evaluated numerically. Simulation programs us-
ing these inequalities spend nearly all their time computing the in-
equalities. This report presents a close-form approximation for beta
inequalities that is two orders of magnitude faster to evaluate.

1 Normal approximation

It is well known that a beta distribution may sometimes be approximated
by a normal distribution. This approximation becomes exact asymptotically
as the beta distribution parameters increase. For small parameters, the
approximation is best when the parameters are nearly equal.

The key idea in this report is

P (XB > YB) ≈ P (XN > YN )
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where XB and YB are independent beta random variables and XN and
YN are their normal approximations formed by moment matching. This
approximation can be surprisingly accurate, even for small parameter values.

Let µX be the common mean of XB and XN . If the beta parameters of
XB are a and b, then

µX =
a

a+ b
.

Also, let σ2X be the common variance of XB and XN . In terms of the beta
parameters, this is

σ2X =
ab

(a+ b)2(a+ b+ 1)
.

Then

P (XN > YN ) = Φ

(
µX − µY

(σ2X + σ2Y )1/2

)
.

If the distribution parameters of XB and YB take on integer values be-
tween 1 and 10 inclusive, the maximum absolute error occurs when XB ∼
Beta(1, 3) and YB ∼ Beta(3, 10). In this case P (XB > YB) = 0.4835
and P (XN > YN ) = 0.5342 for an absolute error of 0.05069. The average
absolute error over the parameter values is 0.006676.

If we search instead over integer parameters between 10 and 100 in-
clusive, the maximum absolute error occurs when XB ∼ Beta(10, 31) and
YB ∼ Beta(32, 100). In this case P (XB > YB) = 0.4927 and P (XN >
YN ) = 0.5078 for an absolute error of 0.0151. The average absolute error
over the parameter values is 0.0006416.

The time required to compute the beta inequality directly through nu-
merical integration and the time required to compute the inequality via the
normal approximation depend on how particular software is implemented.
However, in one benchmark, the normal approximation was 510 times faster
than the numerical integration.

2 Shifted inequalities

The approximation given here can be extended to

P (XB > YB + δ) ≈ P (XN > YN + δ)
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.

In this case one simply replaces µY with µY +δ in the calculations above.

3 Numerical tactics

Much of the work that goes into designing Bayesian clinical trials is trial-
and-error simulation to find parameters that give the Bayesian design the
desired frequentist operating characteristics. (Perhaps one day Bayesian
trials will be designed on Bayesian principles, but for now this is rarely
done.) One could use the approximation presented here during the search
for desired parameters and then use slower but more exact computational
methods for confirmation.

Another approach would be to always use the approximation given here,
but switch to a more accurate method only when the former method suggests
that the difference in accuracy may matter. For example, if a trial is designed
to stop when P (X > Y ) is 0.95 and the approximate value of the inequality
is in the range (0.94, 0.96), software could recalculate the inequality using
a more accurate method.
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