Notes on a paper of Ioannidis

John D. Cook cook@mdanderson.org

February 26, 2010

Abstract

This note makes explicit a few calculations that are implicit in the essay Why Most Published Research Findings Are False by John P. A. Ioannidis¹.

Ioannidis develops three equations for positive predictive value (PPV) of a finding, the probability that the result is correct, in his essay *Why Most Published Research Findings Are False*. Suppose researchers select their hypotheses for investigation from a pool with a ratio of true hypotheses to false hypotheses equal to R. These hypotheses are tested in experiments with a type I error rate α and a type II error rate β . In the simplest case, one investigator testing one hypothesis with no bias, the PPV is given by

$$\frac{(1-\beta)R}{R-\beta R+\alpha}.$$
(1)

If there is bias, some proportion u of results that would otherwise have been found negative are published as positive results. In that case,

$$\frac{(1-\beta)R + u\beta R}{R - \beta R + \alpha + u(1-\alpha + \beta R)}.$$
(2)

If there is no bias, but a hypothesis is investigated by n independent researchers, the PPV becomes

$$\frac{(1-\beta^n)R}{R+1-(1-\alpha)^n-\beta^n R}.$$
(3)

We only consider equations (2) and (3) since equation (1) is a special case of equation (3) with n = 1.

¹Ioannidis JPA (2005) Why Most Published Research Findings Are False. PLoS Med 2(8): e124. doi:10.1371/journal.pmed.0020124

Ioannidis examines factors that lower PPV, except possibly in the strange case that $1 - \beta < \alpha$. (If $1 - \beta \ge \alpha$, either the type I or type II error rate is enormous.) He concludes that PPV decreases as a function of u, β , and n. We establish these claims below. We will find the following lemma useful.

Lemma 1. Define

$$f(x) = \frac{a+bx}{c+dx}.$$
(4)

Then f(x) is a decreasing function if ad > bc.

Proof. The derivative

$$f'(x) = \frac{bc - ad}{(c + dx)^2}$$

is negative when its denominator is negative.

Claim 1. *PPV decreases as a function of u provided* $1 - \beta > \alpha$ *.*

Proof. The PPV

$$\frac{(1-\beta)R + u\beta R}{R - \beta R + \alpha + u(1-\alpha + \beta R)}$$

can be put in the form f(u) where f is defined in equation (4) if

$$a = (1 - \beta)R$$

$$b = \beta R$$

$$c = R - \beta R + \alpha$$

$$d = (1 - \alpha + \beta R).$$

The function f(u) is decreasing if ad > bc. Substitute the definitions of a, b, c, and d and you'll find that ad > bc if and only if $1 - \beta > \alpha$.

Claim 2. PPV decreases as a function of β .

Proof. First consider the case of single testing (n = 1) with bias. Then the PPV

$$\frac{(1-\beta)R + u\beta R}{R - \beta R + \alpha + u(1-\alpha + \beta R)}$$

can be put in the form $f(\beta)$ as in equation (4) if

$$a = R$$

$$b = (u-1)R$$

$$c = R + \alpha + u(1-\alpha)$$

$$d = (u-1)R.$$

The condition ad > bc holds for all values of the parameters.

Next consider the case of multiple testing without bias. Then the PPV

$$\frac{(1-\beta^n)R}{R+1-(1-\alpha)^n-\beta^n R}$$

can be written in the form $f(\gamma)$ where

$$\begin{aligned} \gamma &= \beta^n \\ a &= R \\ b &= -R \\ c &= R+1-(1-\alpha)^n \\ d &= -R. \end{aligned}$$

The condition ad > bc always holds, and so f is a decreasing function of γ . Since β^n is an increasing function of β , it follows $f(\beta^n)$ is a decreasing function of β .

Note that we did not need to assume $1 - \beta > \alpha$.

Claim 3. *PPV decreases as a function of* n *for* n > 0 *provided* $1 - \beta > \alpha$ *.*

Proof. We will prove that the expression for PPV is a decreasing function n as a continuous variable.

Define

$$g(n) = \frac{1 - \beta^n}{R + 1 - (1 - \alpha)^n - \beta^n R}$$

The function g(n) is PPV/R. Since R is a positive constant, it is sufficient to prove g(n) is decreasing.

$$g'(n) = \frac{(1-\beta^n)(1-\alpha)^n \log(1-\alpha) - (1-(1-\alpha)^n)\beta^n \log\beta}{(R+1-(1-\alpha)^n - \beta^n R)^2}$$

The denominator is positive and so we need only show that the numerator, call it h(n), is negative. Let $x = (1 - \alpha)^n$ and $y = \beta^n$. Since we assume $1 - \beta > \alpha$, we have x > y.

Then

$$h(n) = \frac{(1-y)x\log x - (1-x)y\log y}{n}$$

To show that h(n) is negative, it is enough to show that

$$\frac{x\log x}{1-x} < \frac{y\log y}{1-y}$$

for x > y, or equivalently, that $\varphi(x) = (x \log x)/(1-x)$ is decreasing for 0 < x < 1.

To show $\varphi(x)$ is decreasing, we show its derivative

$$\varphi'(x) = \frac{\log(x) - x + 1}{(1 - x)^2}$$

is negative. The the numerator is negative on (0, 1) because $\log(x) - x + 1$ is an increasing function equal to zero at x = 1. The denominator is positive and so $\phi'(x)$ is negative for 0 < x < 1.